libcmaes
A C++11 library for stochastic optimization with CMA-ES
 All Classes Namespaces Functions Variables Typedefs
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 12345]
 CA< T, U >
 CA< int, U >
 Clibcmaes::ACovarianceUpdateActive Covariance Matrix update. This implementation closely follows N. Hansen, R. Ros, "Benchmarking a Weighted Negative Covariance Matrix Update on the BBOB-2010 Noiseless Testbed", GECCO'10, 2010
 CB< V >
 Clibcmaes::CandidateCandidate solution point, in function parameter space
 Clibcmaes::RankedCandidate
 Clibcmaes::CMASolutionsHolder of the set of evolving solutions from running an instance of CMA-ES
 Clibcmaes::CMAStopCriteria< TGenoPheno >CMA-ES termination criteria, see reference paper in cmastrategy.h
 Clibcmaes::contourFunction contour as a set of points and values
 Clibcmaes::CovarianceUpdateCovariance Matrix update. This is an implementation closely follows: Hansen, N. (2009). Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed. Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference, ACM, pp. 2389-2395
 CDC2DSurvey
 CEigen::EigenMultivariateNormal< Scalar >
 CEigen::EigenMultivariateNormal< double >
 Clibcmaes::errstats< TGenoPheno >
 Clibcmaes::ESOStrategy< TParameters, TSolutions, TStopCriteria >Main class describing an evolutionary optimization strategy. Every algorithm in libcmaes descends from this class, and bring its functionalities to an ESOptimizer object
 Clibcmaes::ESOStrategy< CMAParameters< TGenoPheno >, CMASolutions, CMAStopCriteria< TGenoPheno > >
 Clibcmaes::CMAStrategy< CovarianceUpdate >
 CcustomCMAStrategy
 Clibcmaes::CMAStrategy< TCovarianceUpdate, TGenoPheno >This is an implementation of CMA-ES. It uses the reference algorithm and termination criteria of the following paper: Hansen, N. (2009). Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed. Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference, ACM, pp. 2389-2395 See https://www.lri.fr/~hansen/publications.html for more information
 Clibcmaes::IPOPCMAStrategy< TCovarianceUpdate, TGenoPheno >Implementation of the IPOP flavor of CMA-ES, with restarts that linearly increase the population of offsprings used in the update of the distribution parameters
 Clibcmaes::BIPOPCMAStrategy< TCovarianceUpdate, TGenoPheno >Implementation of the BIPOP flavor of CMA-ES, with restarts that control the population of offsprings used in the update of the distribution parameters in order to alternate between local and global searches for the objective
 Clibcmaes::OptHopStrategy< TCovarianceUpdate, TGenoPheno >
 Clibcmaes::SurrogateStrategy< CMAStrategy, TCovarianceUpdate, TGenoPheno >
 Clibcmaes::SimpleSurrogateStrategy< CMAStrategy, TCovarianceUpdate, TGenoPheno >
 CRSVMSimpleSurrogateStrategy< TCovarianceUpdate, TGenoPheno >
 Clibcmaes::fcrossFunction crossing as point
 CEigen::internal::functor_traits< scalar_normal_dist_op< Scalar > >
 Clibcmaes::GenoPheno< TBoundStrategy, TScalingStrategy >
 ClastEvalStruct
 Clibcmaes::linScalingStrategy
 CMessage
 CCMAAXLen
 CCMAFit
 CCMAStdDev
 CCMAXMean
 CCMAXRecentBest
 CHeader
 CLegacyCMAOutput
 CSqrtEigenVals
 CStds
 CUniqueCMAOutput
 CXMean
 Clibcmaes::NoBoundStrategy
 Clibcmaes::NoScalingStrategy
 Clibcmaes::Parameters< TGenoPheno >Generic class for Evolution Strategy parameters
 Clibcmaes::CMAParameters< TGenoPheno >Parameters for various flavors of the CMA-ES algorithm
 CparamStruct
 Clibcmaes::pliProfile likelihood object holder as a set of points and values
 Clibcmaes::pwqBoundStrategy
 CRelBreitWigner
 CEigen::internal::scalar_normal_dist_op< Scalar >
 CEigen::internal::scalar_normal_dist_op< double >
 CStaticDescriptorInitializer_out_2eproto
 CStaticDescriptorInitializer_out_5fext_2eproto
 Clibcmaes::StopCriteria< TGenoPheno >
 CTESOStrategy
 Clibcmaes::ESOptimizer< TESOStrategy, TParameters, TSolutions >Optimizer main class
 CTStrategy
 Clibcmaes::SurrogateStrategy< TStrategy, TCovarianceUpdate, TGenoPheno >Surrogate base class, to be derived in order to create strategy to be used along with CMA-ES
 Clibcmaes::ACMSurrogateStrategy< TStrategy, TCovarianceUpdate, TGenoPheno >ACM Surrogate strategy for CMA-ES, follows: 'Surrogate-Assisted Evolutionary Algorithms', Ilya Loshchilov, PhD Thesis, Universite Paris-Sud 11, 2013. http://www.loshchilov.com/phd.html see Chapter 4
 Clibcmaes::SimpleSurrogateStrategy< TStrategy, TCovarianceUpdate, TGenoPheno >Simple surrogate strategy: trains every n steps, and exploits in between, mostly as an example and for testing / debugging surrogates. This strategy overrides the ask/eval/tell functions of the base optimization strategy
 CtwoDoubles
 Clibcmaes::VDCMAUpdateVD-CMA update that is a linear time/space variant of CMA-ES This is an implementation that closely follows: Y. Akimoto, A. Auger and N. Hansen: Comparison-Based Natural Gradient Optimization in High Dimension. In Proceedings of Genetic and Evolutionary Computation Conference (2014)