libcmaes
A C++11 library for stochastic optimization with CMA-ES
 All Classes Namespaces Functions Variables Typedefs
Public Member Functions | Public Attributes | List of all members
Eigen::EigenMultivariateNormal< Scalar > Class Template Reference

#include <eigenmvn.h>

Public Member Functions

void set_covar (const Matrix< Scalar, Dynamic, Dynamic > &covar)
 
void set_transform (const Matrix< Scalar, Dynamic, Dynamic > &transform)
 
 EigenMultivariateNormal (const bool &use_cholesky=false, const uint64_t &seed=std::mt19937::default_seed)
 
 EigenMultivariateNormal (const Matrix< Scalar, Dynamic, 1 > &mean, const Matrix< Scalar, Dynamic, Dynamic > &covar, const bool &use_cholesky=false, const uint64_t &seed=std::mt19937::default_seed)
 
void setMean (const Matrix< Scalar, Dynamic, 1 > &mean)
 
void setCovar (const Matrix< Scalar, Dynamic, Dynamic > &covar)
 
Matrix< Scalar, Dynamic,-1 > samples (int nn, double factor)
 
Matrix< Scalar, Dynamic,-1 > samples_ind (int nn, double factor)
 
Matrix< Scalar, Dynamic,-1 > samples_ind (int nn)
 

Public Attributes

SelfAdjointEigenSolver< Matrix
< Scalar, Dynamic, Dynamic > > 
_eigenSolver
 

Detailed Description

template<typename Scalar>
class Eigen::EigenMultivariateNormal< Scalar >

Find the eigen-decomposition of the covariance matrix and then store it for sampling from a multi-variate normal

Member Function Documentation

template<typename Scalar>
Matrix<Scalar,Dynamic,-1> Eigen::EigenMultivariateNormal< Scalar >::samples ( int  nn,
double  factor 
)
inline

Draw nn samples from the gaussian and return them as columns in a Dynamic by nn matrix


The documentation for this class was generated from the following file: