libcmaes
A C++11 library for stochastic optimization with CMA-ES
|
#include <eigenmvn.h>
Public Member Functions | |
void | set_covar (const Matrix< Scalar, Dynamic, Dynamic > &covar) |
void | set_transform (const Matrix< Scalar, Dynamic, Dynamic > &transform) |
EigenMultivariateNormal (const bool &use_cholesky=false, const uint64_t &seed=std::mt19937::default_seed) | |
EigenMultivariateNormal (const Matrix< Scalar, Dynamic, 1 > &mean, const Matrix< Scalar, Dynamic, Dynamic > &covar, const bool &use_cholesky=false, const uint64_t &seed=std::mt19937::default_seed) | |
void | setMean (const Matrix< Scalar, Dynamic, 1 > &mean) |
void | setCovar (const Matrix< Scalar, Dynamic, Dynamic > &covar) |
Matrix< Scalar, Dynamic,-1 > | samples (int nn, double factor) |
Matrix< Scalar, Dynamic,-1 > | samples_ind (int nn, double factor) |
Matrix< Scalar, Dynamic,-1 > | samples_ind (int nn) |
Public Attributes | |
SelfAdjointEigenSolver< Matrix < Scalar, Dynamic, Dynamic > > | _eigenSolver |
Find the eigen-decomposition of the covariance matrix and then store it for sampling from a multi-variate normal
|
inline |
Draw nn samples from the gaussian and return them as columns in a Dynamic by nn matrix